Shangshang Chen

Perovskite & Organic devices

 

C402, Chemistry Building

Nanjing University

Qixia District, Nanjing, P. R. China

 

 

 

Email: schen@nju.edu.cn

 

Biography

Education/Work Experience

  • 2010-2014, bachelor, Nanjing University
  • 2014-2018, PhD, Hong Kong University of Science and Technology
  • 2018-2021, Post doc, University of North Carolina at Chapel Hill
  • 2022-present, PI, Nanjing University

 

Research Interests

  • Organic semiconductors and conductive polymers;
  • Organic solar cells;
  • Organic-inorganic hybrid perovskite materials and devices;
  • Materials and device characterization.

 

Selected publications

1. Chen, S.; Dai, X.; Xu, S.; Jiao, H.; Zhao, L.; Huang, J.* Stabilizing perovskite-substrate interfaces for high-performance perovskite modules, Science 373, 902 (2021).

2. Chen, S.; Deng, Y.; Gu, H.; Xu, S.; Wang, S.; Yu, Z.; Blum, V.; Huang, J.* Trapping Lead inside Perovskite Solar Modules with Abundant and Low-Cost Cation Exchange Resins. Nature Energy 5, 1003-1011 (2020).

3. Yang, S.‡; Chen, S.‡; Mosconi, E.; Fang, Y.; Xiao, X.; Wang, C.; Zhou, Y.; Yu, Z.; Zhao, J.; Gao, Y.; Angelis, D. F.; Huang, J.* Stabilizing Halide Perovskite Surfaces for Solar Cell Operation with Wide-Bandgap Lead Oxysalts. Science 365, 473-478 (2019).

4. Chen. S.; Deng, Y,; Xiao, X.; Xu, S.; Huang, J.* Preventing Lead Leakage with Built-in Resin Layers for Sustainable Perovskite Solar Cells. Nature Sustainability 4, 636-643 (2021).

5. Chen, S.; Xiao, X.; Chen, B.; Kelly, L.; Zhao, J.; Lin, Y.; Toney, M., Huang, J.* Crystallization in One-Step Solution Deposition of Perovskite Films: Upward or Downward? Science Advances 7, eabb2412 (2021).

6. Chen, S.; Xiao, X.; Gu, H.; Huang, J.* Iodine Reduction for Reproducible and High Performance Perovskite Solar Cells and Modules. Science Advances 7, eabe8130 (2021).

7. Liu, J.‡; Chen, S.‡; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H.; Inganäs, O.; Gundogdu, K.;* Gao, F.;* Yan, H.* Fast Charge Separation in a Non-Fullerene Organic Solar Cell with a Small Driving Force. Nature Energy 1, 16089 (2016).

8. Chen, S.; Liu, Y.; Xiao, X.; Yu, Z.; Deng, Y.; Dai, X.; Ni, Z.; Huang, J.* Identifying the Soft Nature of Defective Perovskite Surface Layer and Its Removal Using a Facile Mechanical Approach. Joule 4, 2661-2674 (2020).

9.  Chen, S.; Liu, Y.; Zhang, L.; Chow, P. C.; Wang, Z.; Zhang, G.; Ma, W.;* Yan, H.* A Wide-Bandgap Donor Polymer for Highly Efficient Non-fullerene Organic Solar Cells with a Small Voltage Loss. J. Am. Chem. Soc. 139, 6298 (2017).

10. Chen, S.‡; Wang, Y.‡; Zhang, L.; Zhao, J.; Chen, Y.; Zhu, D.; Yao, H.; Zhang, G.; Ma, W.; Friend, H. R.; Chow, P. C.;* Gao, F.;* Yan, H.* Efficient Nonfullerene Organic Solar cells with Small Driving Forces for Both Hole and Electron Transfer. Adv. Mater. 30, 1804215 (2018).

11. Chen, S.‡; Zhang, G.‡; Liu, J.; Yao, H.; Zhang, J.; Ma, T.; Li, Z.; Yan, H.* An All‐Solution Processed Recombination Layer with Mild Post‐Treatment Enabling Efficient Homo‐Tandem Non‐Fullerene Organic Solar Cells. Adv. Mater. 29, 1604231 (2017).

 

 

Abstract for Presentation

High-Performance Perovskite Solar Modules Enabled by Hydrazine Compounds

 

Recently lab-scale perovskite solar cells have realized over 25% power conversion efficiency, demonstrating the great potential of perovskite photovoltaics as next-generation low-cost solar technology. Next natural step forward is to transfer small cells to large modules via scalable fabrication methods like blade coating and slot-die coating. The manufacturing of perovskite modules needs to address several key problems including device reproducibility, precursor solution stability, and module stability. To this end, we show that the addition of hydrazine compounds including benzyl hydrazine and carbohydrazide is able to well address these issues. The strong reduction capacities of hydrazine compounds can effectively suppress the oxidation of iodide and stabilize perovskite precursor solutions for several months, thus broadening the processing windows and improving device reproducibility1. Meanwhile, carbohydrazide can coordinate with Pb, tune the perovskite crystallization, and reduce the interfacial voids that initialize the film decomposition2. These combined beneficial effects of low-cost hydrazine compounds enable us to improve perovskite solar module efficiency to 19.2% with an aperture area of 50.0 cm2, and the modules are able to retain 85% of initial efficiencies after 1000-hour light soaking.

 

References

[1] S. Chen, X. Xiao, H. Gu, J. Huang, Sci. Adv. 2021, 7 (10), eabe8130.

[2] S. Chen, X. Dai, S. Xu, H. Jiao, L. Zhao, J. Huang, Science 2021, 373 (6557), 902.